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RESEARCH

Timing of flowering is a critical determinant of the adapta-
tion of a grain or seed crop to a given production environ-

ment and set of management practices. In bread wheat (Triticum 
aestivum L.), the Vrn and Ppd families of loci exert major infl uences 
on fl owering by modifying the sensitivity of reproductive devel-
opment to vernalization and photoperiod, respectively (Flood and 
Halloran, 1986; Worland, 1996; Laurie et al., 2004; van Beem 
et al., 2005; Iqbal et al., 2007). Although wheat researchers rec-
ognize the importance of these loci, attempts to quantitatively 
predict the eff ects of diff erent loci under variable environment 
conditions are rare. A robust, quantitative methodology for inter-
preting interacting eff ects of specifi c loci and the environment 

Simulation-Based Analysis of Eff ects of 
Vrn and Ppd Loci on Flowering in Wheat

Jeff rey W. White,* Markus Herndl, L. A. Hunt, Thomas S. Payne, and Gerrit Hoogenboom

ABSTRACT

Cereal production is strongly infl uenced by 

fl owering date. Wheat (Triticum aestivum L.) 

models simulate days to fl ower by assuming 

that development is modifi ed by vernalization 

and photoperiodism. Cultivar differences are 

parameterized by vernalization requirement, 

photoperiod sensitivity, and earliness per se. 

The parameters are usually estimated by com-

paring simulations with fi eld observations but 

appear estimable from genetic information. For 

wheat, the Vrn and Ppd loci, which affect vernal-

ization and photoperiodism, were logical candi-

dates for estimating parameters in the model 

CSM-Cropsim-CERES. Two parameters were 

estimated conventionally and then re-estimated 

with linear effects of Vrn and Ppd. Flowering 

data were obtained for 29 cultivars from inter-

national nurseries and divided into calibration 

(14 locations) and evaluation (34 locations) sets. 

Simulations with a generic cultivar explained 

95% of variation in fl owering for calibration data 

(10 d RMSE) and 89% for evaluation data (10 

d RMSE), indicating the large effect of environ-

ment. Nonetheless, for the calibration data, the 

gene-based model explained 29% of remain-

ing variation, and the conventional model, 54%. 

For the evaluation data, the gene-based model 

explained 17% of remaining variation, and the 

conventional model, 27%. Gene-based predic-

tion of wheat phenology appears feasible, but 

more extensive genetic characterization of cul-

tivars is needed.
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should permit a much more mechanistic understanding 
of genotype by environment interactions for phenology, 
grain yield, and other economically important traits.

Process-based ecophysiological models can integrate 
the eff ects of environment, crop management, and cul-
tivar to predict crop growth and development. Cultivar 
diff erences in phenology are usually embodied through 
parameters that modify sensitivity to factors such as ver-
nalization temperatures or photoperiod regimes (e.g., 
Ritchie, 1991). Cultivar diff erences in earliness per se 
may also be represented through minimum durations 
of specifi c developmental phases. Often labeled “genetic 
coeffi  cients” to refl ect their use in specifying cultivar dif-
ferences, the cultivar parameters nonetheless are estimated 
primarily using phenotypic data obtained from fi eld trials 
(White and Hoogenboom, 1996; Baenziger et al., 2004). 
This process is often slow and expensive since obtaining 
reliable calibrations may require conducting fi eld trials at 
multiple locations or over several cropping seasons. The 
process also is often considered prone to over-calibration 
for local conditions, which can infl ate the apparent validity 
of a model, hinder detection of problematic assumptions 
or errors in other model inputs, and reduce the reliability 
of model-based predictions.

Recognizing the problems inherent in use of culti-
var-specifi c model parameters, various researchers have 
pursued strategies to replace the parameters with data 
for genetic loci. The GeneGro model for common bean 
(Phaseolus vulgaris L.) used data for seven loci and predicted 
phenology, yield, and grain size as well as the parent 
model using conventionally estimated cultivar parameters 
(White and Hoogenboom, 1996; Hoogenboom et al., 
1997, 2004b; Hoogenboom and White, 2003). Messina 
et al. (2006) successfully modeled phenology in soybean 
using the same approach. Eff orts to use data for quantita-
tive trait loci (QTL) instead of Mendelian loci have shown 
promise for modeling specifi c traits (e.g., Reymond et al., 
2003; Nakagawa et al., 2005). Attempts to parameterize 
inputs for whole plant models using QTL appear some-
what less encouraging (Yin et al., 2000). The problems 
encountered may refl ect diffi  culties inherent in accurately 
phenotyping the large numbers of lines required for QTL 
analyses and in identifying true QTL through appropriate 
statistical analysis (Edmeades et al., 2004). Recently, sev-
eral papers have argued for more mechanistic approaches 
for integrating genomics with modeling (e.g., Minorsky, 
2003; Tardieu, 2003; White and Hoogenboom, 2003; 
Hammer et al., 2004; Struik et al., 2005; Wollenweber et 
al., 2005; Yin et al., 2004; White, 2006). Actual applica-
tions of such approaches are few. Among promising exam-
ples are eff orts to model gene networks for fl owering at a 
simplifi ed level (Welch et al., 2003).

Over 40 Mendelian loci have been described as aff ect-
ing physiological traits in wheat (White, 2006). Of these, 

perhaps 30 aff ect traits that are readily modeled. Thus, 
it appears that there is suffi  cient genetic information to 
initiate work on a gene-based wheat model. Experience 
with GeneGro (White and Hoogenboom, 1996) sug-
gested that the linear regressions used to estimate eff ects of 
genes on model parameters could be programmed exter-
nal to the model code. Given the large number of wheat 
models available (e.g., Grant et al., 2001; Jamieson et al., 
1998; Asseng et al., 2002), it seemed desirable to develop 
a gene-based estimator of cultivar-specifi c model parame-
ters, rather than a single gene-based wheat model (White, 
2006). If successful, this would facilitate direct transfer of 
results to alternative wheat models.

The goal of this study was to test the practicability of 
using a gene-based procedure to estimate model param-
eters for predicting phenology. The main objective was 
to determine how well gene-based parameters performed 
relative to conventionally estimated parameters, testing 
the results with simulations of fl owering time of diverse 
bread wheats grown over a wide range of wheat produc-
tion environments.

MATERIALS AND METHODS

Data Sources
Data on crop management and phenology were obtained 

from the International Winter Wheat Performance Nurseries 

(IWWPN) from 1969 to 1981. This series of replicated trials 

was distributed to over 30 countries globally by the Univer-

sity of Nebraska and USDA-ARS with support from the U.S. 

Agency for International Development. In total, 168 cultivars 

were tested in the IWWPN. Each year, 30 cultivars or breed-

ing lines were grown, and most cultivars were included for at 

least 2 yr. Trials were grown at 85 locations, which predomi-

nantly represented traditional winter wheat production areas 

but included spring wheat areas. Results of the IWWPN were 

published in 13 reports of the Research Bulletin of the Nebraska 

Agricultural Experiment Station (e.g., Kuhr et al., 1984). Phe-

notypic data and management summaries were digitized from 

the reports and stored in the International Wheat Information 

System (IWIS; Payne et al., 2002) at the International Maize 

and Wheat Improvement Centre (CIMMYT). Various minor 

errors such as in reporting of geographic coordinates of loca-

tions, year of sowing, and the reference date for time of fl ower-

ing were corrected, so the data in IWIS diff ered slightly from 

that in the published reports. There was possible confusion 

over reporting of “time of fl owering.” Although this term is 

logically associated with time of anthesis, most wheat programs 

only record heading date. Thus, the reported data may have 

referred to heading or anthesis. To permit meaningful com-

parisons across locations, all fl owering data were re-expressed 

as days after sowing.

Although 168 cultivars were tested in the 13 cycles of the 

nurseries, only 29 cultivars were used (Table 1) due to lim-

ited availability of information on their genetic makeup. Alleles 

present at the Ppd and Vrn loci were determined through various 

sources. The online database (Martynov et al., 2006)  provided 
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tures (required to simulate crop development) were obtained 

for 48 locations, representing 362 experiments (Table 2). 

Weather data sources included online databases (e.g., University 

of California, Agriculture and Natural Resources, 2005), indi-

vidual researchers, and the Global Summary of the Day data-

base (Lott, 1998). In several cases, the nearest weather station 

corresponded to an airport or other nonagricultural source, so 

elevation, distance from reported locations of experiments, and 

land use were examined using the Google Earth mapping tool 

data for many cultivars and also contained information on 

pedigrees and growth habit. Dencic (2001) and van Beem et 

al. (2005) contained additional data. Few evaluations for Ppd 

loci were found. Some daylength insensitive cultivars of Euro-

pean origin were classifi ed by assuming that they contained the 

Ppd-D1 locus (Worland, 1996; Worland et al., 1998).

Eighty-two locations of the IWWPN provided suffi  cient 

crop management data to allow simulating crop growth and 

development. Daily data for maximum and minimum tempera-

Table 1. Habit, origin, pedigree, mean observed days to anthesis, assumed genotypes, and estimated model parameters for 

cultivars used in the study.† 

Cultivar Habit Origin Pedigree
Days to anthesis Locus Model parameters

Mean No. values‡ Vrn-A1 Vrn-B1 Vrn-D1 Ppd-D1 P1V P1D

d d %

INIA 66 S Mexico Lerma Rojo 64/Somora 64 181 15 1 1 0 1 18 29

Super X S Mexico Penjamo-62(SIB)/Gabo-55 208 86 1 1 0 1 44 32

Lerma Rojo 64 S Mexico Yaqui-50//Norin-10/Brevor/3/

Lerma 52/4/2*Lerma Rojo

200 202 0 1 1 1 29 35

Bastion S Netherlands Halle-12//Halle-35/Mara 220 64 0 1 0 1 48 48

Irnerio S Italy Produttore/Manitoba 208 62 0 0 1 1 48 27

Aurora W USSR Hard Federation/Cleveland//Sands 213 58 0 0 0 1 71 21

Balkan W Yugoslavia Backa/Bezostaya-1//

Mironovskaya-808/3/NS-433/4/

Skorospelka-35

214 37 0 0 0 1 62 21

Bezostaya 1 W USSR (S) Bezostaya-4 214 348 0 0 0 1 58 25

Biserka W Yugoslavia Fortunato*2/(CI-13170)Redcoat 212 65 0 0 0 1 53 26

Dwarf Bezostaya W USSR (S) Bezostaya 211 57 0 0 0 1 68 21

Jugoslavija W Yugoslavia NS-646/Bezostaja 1//Aurora 214 38 0 0 0 1 62 31

Moslavka W Yugoslavia ZG-3814-65/TP-114-1965-A//

ZG-3814-65.Sanja

209 35 0 0 0 1 53 20

Odesskaya 51 W USSR Odesskaya-16/Bezostaya-1 218 72 0 0 0 1 65 18

Partizanka W Yugoslavia Bezostaya-1/NS-116 215 71 0 0 0 1 62 15

Phoenix W Australia WW-15*2/WW-80 205 38 0 0 0 1 55 17

San Pastore W Italy Balilla/Villa Glori 194 42 0 0 0 1 50 17

Sanja W Yugoslavia ZG-414–57/Leonardo 209 60 0 0 0 1 54 31

Sava W Yugoslavia Fortunato*2/(CI-13170)Redcoat 211 58 0 0 0 1 37 37

Talent W France Champlein/3/Thatcher/

Vilmorin-27//Fortunato

215 68 0 0 0 1 57 28

Zlatna dolina W Yugoslavia ZG-414-57/Leonardo 209 65 0 0 0 1 62 24

Zlatoklasa W Yugoslavia Sanja/TP-114-1965-A//Sanja 210 68 0 0 0 1 55 25

Bounty W England Maris Ploughman/Durin 224 36 0 0 0 0 59 49

Cappelle Desprez W France Vilmorin-27/Hybride du-Joncquois 216 23 0 0 0 0 68 31

Maris Huntsman W England CI-12633/5*Cappelle-

Desprez//Hybrid-46/Cappelle-

D./3/2*Professeur-Marchal

226 67 0 0 0 0 59 48

Maris Mardler W England Maris Ranger/Maris Durin//Maris 

Huntsman

219 38 0 0 0 0 60 39

Maris Nimrod W England CI-12633/Yeoman//5*Cappelle/3/

Cappelle/Hybrid-

46/4/2*Professeur-Marchal

220 67 0 0 0 0 65 38

Maris Templar W England CI-12633/5*Cappelle D.//Hei-

nes-110/ Cappelle-D./3/Nord-

Desprez/4/Viking

227 67 0 0 0 0 74 39

Mironovskaya 808 W USSR (T) Artemovka 219 72 0 0 0 0 72 34

Vakka W Finland Varma/G-5-20-Kehra 222 60 0 0 0 0 57 42

†Habit is as reported in the International Winter Wheat Performance Nurseries (IWWPN); S, spring; W, winter. Origins are as reported in the original IWWPN reports and may 

not refl ect current political boundaries. Loci were scored 0 or 1 if the recessive or dominant allele, respectively, is present. Cultivars are ordered from greatest number of 

dominant alleles within the Vrn and Ppd loci.

‡Number of locations and years used to calculate the mean for a cultivar.
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(Google, Inc., Mountain View, CA). No weather 

station data were used if the station was located 

more than 25 km from the experiment or if the 

pairs of locations diff ered greatly in elevation or 

land cover. No attempt was made to link locations 

to soil profi le descriptions as simulations assumed 

no limitations of water and nutrients.

Phenotypic and management data were 

extracted from IWIS as spreadsheets and refor-

matted for use in the model using a structure 

similar to the standards of the International Con-

sortium for Agricultural Systems Analysis (Hunt 

et al., 2001, 2006). Phenotypic data were available 

for days from sowing to fl owering and maturity, 

grain yield, and other traits, but for this study, 

only fl owering data were considered. The set of 

management data required to simulate an experi-

ment thus was location (latitude), sowing date, 

and the list of cultivars grown in that trial.

Simulation Model
All simulations were conducted with the CSM-

Cropsim-CERES-Wheat model Version 4.0.2.0 

( Jones et al., 2003; Hoogenboom et al., 2004a), 

which incorporated features from Cropsim (Hunt 

and Pararajasingham, 1995) and CERES-Wheat 

(Ritchie, 1991; Ritchie et al., 1998). In CSM-

Cropsim-CERES-Wheat, vernalization and 

photoperiod characteristics of diff erent wheat cul-

tivars or lines are specifi ed in species, ecotype, and 

cultivar parameter fi les (Table 3). Developmental 

stages simulated include germination, seedling 

emergence, terminal spikelet initiation, anthesis, 

and physiological maturity. Species and ecotype 

parameters were held constant for all cultivars. 

The values were set as provided with the model 

except for the temperature response of vernaliza-

tion and the critical long photoperiod, which are 

discussed below.

Rates of development vary with temperature 

and photoperiod. The model calculates the aver-

age daily temperature as the mean of the daily 

maximum and minimum temperatures, and all 

cardinal temperatures for development are based 

on average temperatures. In the absence of ver-

nalization and photoperiod eff ects, development 

rates increase linearly at temperatures above a 0°C 

base temperature to an optimum of 26°C, above 

which development proceeds at a maximum rate. 

Occurrences of stages are simulated by integrat-

ing the eff ective temperatures over time, with 

a particular stage being reached when suffi  cient 

progress, quantifi ed as accumulated eff ective tem-

perature, has accrued.

In the presence of vernalization and/or pho-

toperiod eff ects, the accumulated eff ective tem-

perature is replaced by an equivalent temperature 

obtained by summing the products of daily eff ec-

tive temperature, a daily vernalization factor 

Table 2. Locations providing data used for calibration or evaluation of the 

gene-based model parameters.

Country Location Latitude Longitude Elevation Experiments

m

Calibration

Canada Lethbridge 49.72 –112.80 909 4

Chile Chillan –35.47 –71.92 217 5

Chile Temuco-Carillanca –37.33 –72.58 332 6

Germany Weihenstephan 48.40 11.73 467 12

Hungary Martonvasar 47.35 18.82 150 11

Japan Morioka Iwate 39.75 141.13 167 8

Mexico Toluca 19.27 –99.85 2640 3

Netherlands Wageningen 51.97 5.64 7 13

South Africa Bethlehem –27.83 28.30 1631 12

United States Davis, CA 38.53 –121.75 15 8

United States Brookston, IN 40.58 –86.93 183 4

United States Hutchinson, KS 38.05 –97.92 460 5

United States Ithaca, NY 42.45 –76.45 293 6

United States Pullman, WA 46.70 –117.13 777 8

Evaluation

Argentina Balcarce –36.25 –58.23 135 8

Argentina Bordenave –34.15 –63.02 212 13

Argentina Pergamino –32.12 –60.58 68 1

Austria Vienna 48.20 16.75 147 11

Bulgaria Dubrodja 43.72 28.18 236 11

Croatia Zagreb 45.82 15.98 177 12

Czech Republic Sedlec 50.23 14.50 300 6

Finland Jokioinen 60.82 23.48 92 3

France Orgerus 48.83 1.67 100 4

Germany Monsheim 49.58 8.33 160 11

Hungary Szeged 46.00 20.00 84 8

Iraq Sulaimaniya 36.50 46.50 700 6

Iran Hamadan 34.78 48.50 1200 8

Iran Karaj 35.78 50.00 1300 9

Italy Milano 45.22 9.42 68 11

Nepal Kathmandu 27.67 85.33 1360 2

Romania Fundulea 44.50 24.17 66 13

Russia Krasnodar 45.00 38.92 31 8

South Korea Suwon 36.32 126.98 37 12

Slovakia Male Ripnany 48.48 17.98 172 7

Sweden Svalof 55.58 13.10 50 7

Switzerland Zurich 47.48 8.53 445 8

Turkey Erzurum 39.97 41.33 1870 8

Turkey Eskisehir 39.75 31.58 789 5

Ukraine Mironovski 50.25 31.17 151 2

Ukraine Odessa 46.45 30.70 42 1

United Kingdom Cambridge 52.17 0.10 65 6

United States Akron, CO 40.08 –103.67 1389 1

United States Ft. Collins, CO 40.58 –105.17 1475 11

United States Billings, MT 45.80 –108.53 923 6

United States Mead, NE 41.17 –96.42 360 9

United States Salisbury, NC 35.70 –80.62 251 9

United States Stillwater, OK 36.12 –97.07 270 13

United States Corvallis, OR 44.50 –123.50 68 7
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(ranging from 0 to 1), and a photoperiod factor (also 0 to 1). The 

required accumulations of equivalent temperature are model 

parameters (Table 3).

The cultivar-specifi c vernalization coeffi  cient P1V specifi es 

how many days of vernalization are required in order for fl ow-

ering to occur, assuming that temperatures for vernalization are 

optimal. Vernalization was assumed to occur at temperatures 

from −4 to 15°C, with the maximum rate occurring between 

0 and 3°C. These values diff er from the cardinal temperatures 

provided in the offi  cial release of the model (Hoogenboom et 

al., 2004b), which had cardinal temperatures of −5, 0, 7, and 

15°C. This change was introduced because initial tests showed 

that the original cardinal temperatures required allowing val-

ues of P1V as high as 95 d, whereas most studies suggest that 

complete vernalization occurs in less than 60 d (e.g., Davidson 

et al., 1985). The model also allows for devernalization to occur 

when less than 10 d of progress toward vernalization have accu-

mulated, and the maximum temperature exceeds 30°C. The 

daily vernalization rates are accumulated to indicate vernaliza-

tion status, this value being used to calculate the vernalization 

factor. The daily photoperiod factor is calculated using a curvi-

linear response with P1D and P1DT as parameters, and photo-

period as the environmental variable.

Cultivar sensitivity to photoperiod is mainly determined 

by the parameter P1D, which specifi es the reduction in devel-

opmental rate in a photoperiod 10 h shorter than the critical 

long photoperiod, P1DT. The photoperiod is calculated using 

a criterion of the sun being 6° below the horizon. P1DT was 

increased from 20 to 23 h for all cultivars to increase respon-

siveness of the model to the long photoperiods that occurred at 

high latitude sites.

Model Calibration
Fourteen locations, representing 105 experiments, were used 

to calibrate the model (Table 2). Each cultivar was calibrated 

independently starting from initial values of P1V of 60 d and 

P1D of 50%. These values were alternately modifi ed, and simu-

lations were run over the calibration datasets. Goodness of fi t 

was judged by comparing means of observed vs. simulated val-

ues of fl owering date, r2 values, and RMSE. All other species, 

ecotype, and cultivar parameters (Table 3) were held constant.

Estimation of Genetic Effects
Genetic eff ects on P1V and P1D were estimated using the cali-

brated P1V and P1D values, and a linear regression approach 

similar to the procedure of White and Hoogenboom (1996) in 

which each locus is coded with a value of 1 for dominant and 0 

for recessive. For vernalization, for which evidence from Hal-

loran (1967) suggests that the Vrn-1 loci have roughly additive 

eff ects (White, 2006), the relationship was established was P1V 

= 60.0 − 14.5N
Vrn

, where N
Vrn

 is the total number of Vrn-1 loci 

present (dominant) in a given cultivar (r2 = 0.57, with P < 0.01; 

RMSE = 8.3 d).

For photoperiodism, although three Ppd loci have been 

identifi ed in wheat, suffi  cient data were only available to esti-

mate the eff ect of the Ppd-D1 locus. The resulting linear model 

Table 3. Major model parameters affecting time of anthesis and related traits as specifi ed in CSM-Cropsim-CERES-Wheat 

species, ecotype and cultivar fi les.†

Parameter Defi nition Value(s) Units

Species fi le

P1DT Optimal long photoperiod, above which there is no additional effect of photoperiod on development. 23‡ h

P1VT Vernalization type. Threshold value used to characterize response to vernalization. 50 day

P2(1) Duration from terminal spikelet to jointing 80 °C day§

P4(1) Relative duration from end of ear growth to anthesis 0.25 fraction of P4

PECM Duration from germination to seedling emergence from a 1 cm planting depth. 10 °C day cm–1

PEG Duration from sowing to germination in the absence of moisture stress. 10 °C day

TRDV1 Temperature response, development 1 (curve) °C

TRDV2 Temperature response, development 2 (curve) °C

TRVRN Temperature response, vernalization (curve)† °C

TRLTH Temperature response, lethal temperature hardening (curve) °C

WFGEU Effect of soil water availability on seed germination 0.5 fraction of

Ecotype fi le

P1 Duration from end of juvenile phase to double ridge formation 280 °C day

P2 Duration from double ridges to end of leaf growth 250 °C day

P3 Duration from end of leaf growth to end of spike growth 240 °C day

P4 Duration from end of spike growth to end of lag phase for grain fi lling 300 °C day

Cultivar fi le

P1V Days at optimum vernalizing temperature required to complete vernalization. 18–74 day

P1D
Percentage reduction in development rate in a photoperiod 10 h shorter than the optimum (P1DT) relative 

to the rate at the optimum photoperiod
15–48 %

PHINT Phyllochron interval: the interval in thermal time between successive leaf tip appearances. 80 °C day

†Values for P1V and P1D are ranges among the 29 cultivars. All other values were constant across cultivars.

‡Values were modifi ed from those provided in the offi cial release of the model. See methods section for details.

§Degree day.
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for photoperiod was P1D = 39.9 − 13.9Ppd-D1, where Ppd-D1 

was coded with a value of 1 for wheat cultivars that possessed 

the dominant allele, and a value of 0 for the recessive allele. 

This regression gave an r2 value of 0.42 (P < 0.01) and a RMSE 

of 7.5%. The reduction in sensitivity indicated in the equation 

agrees with expectation that dominant alleles of Ppd reduce 

photoperiod sensitivity (e.g., Worland, 1996).

Model Evaluation
Phenotypic data from 34 locations, representing 257 experi-

ments were used to evaluate model outputs. Since locations 

used for calibration were independent of those used for evalua-

tion, the evaluation results were expected to have less bias than 

if data from the same location were used both for calibration 

and evaluation. Initial evaluations used bivariate regressions of 

observed vs. simulated values. Multiple regressions were then 

used to assess the relative predictive capability of cultivar coef-

fi cients estimated directly or indirectly using knowledge of 

the genetic make-up of the cultivars and the equations linking 

genetic composition to the P1V and P1D coeffi  cients, as in the 

approach of White et al. (2007). For the assessments, it was of 

interest to have a baseline value that would represent a generic 

cultivar. Thus, values of P1V and P1D were estimated for a 

hypothetical, generic cultivar by calculating mean values for 

the 29 cultivars. In regressions comparing predictions based on 

the three types of estimates of P1V and P1D, predicted values 

were considered fi xed eff ects and were analyzed using the GLM 

procedure the SAS package (version 9.1, SAS Institute, Cary, 

NC). For analyses examining remaining sources of variation, 

locations, years, and cultivars were considered random eff ects, 

and variance components were estimated using the restricted 

maximum likelihood method as implemented for the MIXED 

procedure of SAS.

RESULTS
Simulations using the conventionally estimated coeffi  -
cients predicted 98% of variation in days to fl owering for 

the calibration dataset and 92% for the evaluation dataset 
(Table 4 and Fig. 1). The calibration dataset also showed 
a RMSE of 6.6 vs. 9.0 d for the evaluation data, agree-
ing with the expected loss of accuracy when dealing with 
an independent set of data. For single nurseries (years of 
distribution) of the IWWPN and across all locations, the 
diff erence in mean days to fl ower for the earliest and latest 
cultivars was typically 18 to 21 d.

Simulations with the gene-based coeffi  cients gave r2 
values of 0.96 for the calibration and 0.90 for the evaluation 
data, with respective RMSE of 8.6 and 9.9 d. While the 
results with the gene-based model suggested only moderate 
loss of accuracy as compared to conventional coeffi  cients, 
simulations with single values of P1V and P1D, represent-
ing the generic cultivar, also gave r2 values of 0.95 for the 
calibration data and 0.89 for the evaluation data and RMSE 
values of 9.7 and 10.4 d, respectively (Table 4).

Regression analysis permitted quantifying whether 
modeling based on genetic information and relationships 
linking genetic composition to model coeffi  cients resulted 
in a signifi cant loss in accuracy. Both the gene-based and 
conventional coeffi  cients explained large portions (P < 
0.001) of the variation in the residuals from the regres-
sion for simulations with the generic cultivar (Table 5). 
The remaining variation was estimated as the total sums 
of squares (SS) less SS attributed to the generic cultivar 
in Table 5. Thus, for the calibration dataset, the gene-
based model explained 29% of remaining variation, and 
the conventional model, 54%. For the evaluation dataset, 
the gene-based model explained 17% of remaining varia-
tion, and the conventional model, 27%. Comparing the 
residuals from the regression for simulations with the 
generic cultivar with the simulations using the other coef-
fi cients revealed that this explanatory ability was related 
to the diff erence in phenology between spring and winter 

Table 4. Summary of comparisons of observed vs. simulated 

values of days to fl owering for conventionally estimated 

model coeffi cients, gene-based estimates, and coeffi cients 

for a single generic cultivar.†

Mean r2 Slope Intercept RMSE

d d

Calibration (n = 540)‡

Observed values 208

Conventional 209 0.98 0.95 (0.01) 10.1 (1.4) 6.6

Gene-based 208 0.96 0.92 (0.01) 16.0 (1.7) 8.6

Generic cultivar 208 0.95 0.95 (0.01) 10.0 (2.0) 9.7

Evaluation (n = 1499)

Observed values 214

Conventional 213 0.92 1.00 (0.01) 0.6 (1.6) 9.0

Generic cultivar 212 0.90 0.99 (0.01) 5.2 (1.8) 9.9

Mean values 214 0.89 1.02 (0.01) –2.7 (2.0) 10.4

†Values of r2 are signifi cant at the 0.001 probability level. Values in parentheses after 

slopes and intercepts are standard errors.

‡n = number of pairs of observed vs. simulated data with no missing values.

Table 5. Analyses of variance for linear regressions examining 

ability of simulations to account for observed variation in phe-

nology, considering both calibration and evaluation datasets.† 

Source df
Sums of 

squares (SS)
% SS F-value RMSE

d

Calibration

Generic cultivar 1 943,086 94.8 21,474 6.6

Gene-based 1 14,812 1.5 337

Conventional 1 12,926 1.3 294

Residual 536 23,540 2.4

Evaluation

Generic cultivar 1 1,371,807 89.5 17,269 8.9

Gene-based 1 27,452 1.8 346

Conventional 1 16,442 1.1 207

Residual 1481 117,649 7.7

†The ANOVAs are for sequential entry of effects using values of P1V and P1D for 

the generic cultivar, gene-based estimates, and conventionally estimated values. 

F-values are signifi cant at the 0.001 probability level.
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wheats and the variation within the spring cultivars (Fig. 
2, evaluation dataset only).

Complementary information about the performance 
of the gene-based coeffi  cients was obtained with the data 
for residuals by fi rst accounting for simulations using the 
gene-based coeffi  cients, and then testing for eff ects of 
location, year within location, cultivar, and simulations 
using the conventionally determined coeffi  cients (Table 
6). When used alone, the gene-based coeffi  cients explained 
over 90% of the total variation in the evaluation dataset 
(Table 4), but large portions of variation in the residuals 
were still associable with eff ects of location, year, cultivar, 
and the conventional model (Table 6).

DISCUSSION
The predictive capability of the model using gene-based 
coeffi  cients confi rmed the potential for predicting wheat 
phenology by combining physiological descriptions with 
genetic data. For the evaluation dataset, the gene-based 
model explained 63% of the variation that would be 
explained by conventionally determined model coeffi  -
cients (SS of 14,812 for gene-based alone vs. SS of 27,738 
for the conventional model), once the generic cultivar 
eff ect was considered (Table 5). Furthermore, when fl ow-
ering date was simulated with the gene-based approach, 
only 5% of the total variation was unexplained in the cali-
bration dataset and 10% in the evaluation set (Table 4).

The comparisons of conventional and gene-based 
simulations with residuals from the generic cultivar (Fig. 
2) illustrated the impact of the limited availability of data 
on specifi c loci. There was no additional predictive power 
within the winter wheats, where only two genotypes 
(Ppd-D1 dominant or recessive) were distinguishable with 
the available genetic data.

The results arguably present an optimistic view of the 
potential of gene-based wheat modeling because the set 
of genotypes and locations is more diverse than routinely 
dealt with in wheat breeding nurseries. Spring and winter 
wheats are seldom evaluated together, and experimental 
sites are often grouped according to similarities in grow-
ing environment and germplasm types grown. None-
theless, fi rst accounting for eff ects of the generic model 
should have fully compensated for the bias from consider-
ing a wide range of environments.

Conversely, the results may present a conservative 
impression of the utility of gene-based approaches due 
to constraints on the accuracy and completeness of the 
genotypic, phenotypic, and environmental data and of 
the model calibration. Our ability to ascribe genotypes 
for Vrn and Ppd loci should improve with rapid progress 
in sequencing the loci and understanding how they inter-
act (Yan et al., 2003; Sherman et al., 2004; Turner et al., 
2005;). Furthermore, the evidence for multiple alleles of 
the Vrn-1 loci (Košner and Pánková, 1998; Sherman et al., 

Figure 1. Comparisons of observed vs. simulated days to fl owering 

for the evaluation datasets using different values of the coeffi cients 

P1V and P1D for the simulations: (A) conventionally estimated 

coeffi cients; (B) gene-based coeffi cients; (C) coeffi cients for a 

single generic cultivar (estimated as means of the conventional 

estimates). Fitted lines are for linear regressions with slopes and 

intercepts as given in Table 4.
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2004; Yan et al., 2004) and for additional Vrn loci (Yan et 
al., 2006) off ers promise for improved discrimination of 
vernalization response. Similarly, variation for earliness per 
se (Eps) loci (Scarth and Law, 1984; Appendino and Slafer, 
2003; Tóth et al., 2003; van Beem et al., 2005) were not 
considered due to insuffi  cient information on variation in 
Eps loci among cultivars. Incorporating eff ects of the Eps 
loci not only should improve overall performance of the 
model, but should allow for more accurate characteriza-
tion of eff ects of the Vrn and Ppd loci.

Evaluations of time to fl owering likely were subject to 
observer bias. In wheat research, “fl owering” is most often 
equated to time of spike emergence, which is also termed 
“ear emergence” or “heading.” However, it can also refer 
to time of anthesis. Regardless of the reference stage, there 
also may have been observer bias as to what portion of 
plants (or tillers) must have individually attained a given 
stage before a fi eld plot was scored as having reached that 
stage. Weather data were also problematic. Although con-
siderable eff ort was made to match reported experiment 
locations to weather stations, lack of weather data from 
actual experiment sites undoubtedly introduced addi-
tional error. Unlike most assessments of ecophysiological 
models, the evaluation data were fully independent of the 
calibration data since the two sets represented geographi-
cally separate sets of locations, which furthermore were 
managed by diff erent research teams at each location.

There is no question of the long-term value of under-
standing the control of fl owering at the level of gene 
expression and molecular signals, and recent progress is 
remarkable (Trevaskis et al., 2007). Our positive results 
emphasize, however, the immediate utility of combin-
ing existing ecophysiological models with genetic data. 
In the case of wheat, progress in interpreting genotype 
by environment interactions appears readily obtainable by 
improving characterization of wheat lines for variation in 
the Vrn and Ppd loci. Such an approach can benefi t from 
information emerging from molecular studies, but the 
characterizations should emphasize robust description of 
ecotypic variation over detailed understanding of molecu-
lar mechanisms. Progress in quantitative modeling of phe-
nology will likely reveal areas where research on specifi c 
processes will have high payoff . Ecophysiological models 
thus may provide a valuable tool for priority setting and 
hypothesis testing in plant biology, echoing arguments of 
R.S. Loomis and colleagues almost 30 yr ago for appro-
priate use of models (Loomis et al., 1979).

The strength of the results rest in large part on the 
availability of the large IWWPN dataset, currently main-
tained by CIMMYT. Although conducted over 25 yr ago, 
the experiments provide a unique resource for examining 
responses of genotype to environment. Combining fi nd-
ings from genomics with the integrative power of ecophysi-
ological models holds potential for increasing our ability to 

predict crop performance as a function of genotypes, man-
agement and expected environmental conditions.

CONCLUSIONS
Once expected large eff ects of location and year were 
accounted for, simulations using the gene-based approach 
accounted for 29 and 17% of variation in time to fl ow-
ering, for the calibration and validation datasets, respec-
tively. In comparison, conventional coeffi  cients explained 
54 and 27% of variation for the two datasets. Additional 
information on genetic makeup of cultivars should further 
improve the predictive power of the gene-based simula-
tions. This might involve either refi nements of linear esti-
mates of gene eff ects or more mechanistic representations 
based on emerging information on gene action. Although 

Figure 2. Comparisons of residuals of regression with the generic 

cultivar vs. simulated days to fl owering for the evaluation datasets 

using different values of the coeffi cients P1V and P1D for the 

simulations. Fitted lines are for linear regressions estimated 

separately for spring or winter types: (A) conventionally estimated 

coeffi cients; (B) gene-based coeffi cients.
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the focus was on phenology, a gene-based approach should 
be extensible to traits that more directly aff ect yield or 
grain quality. Application to other traits, however, again 
requires improved genetic characterization of wheat lines. 
The basic approach also appears readily applicable to other 
wheat models as well as to other crops.
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